姓名:裴立宅 |
|
所在系所:无机非金属材料系 |
职称:教授 |
邮箱:lzpei1977@163.com;lzpei@ahut.edu.cn |
课题组主页: |
教育背景
2006年毕业于湖南大学材料科学与工程专业获工学博士学位
2001年毕业于湖南大学材料科学与工程专业获工学学士学位
工作履历
2012年-现在安徽工业大学365bet手机教授
2007年-现在安徽工业大学365bet手机硕士研究生导师
2006年-2011年安徽工业大学365bet手机副教授
课程教学
讲授本科生课程《材料力学性能》、《高技术陶瓷材料》、《专业导论》、《无机非金属材料学新进展》,硕士研究生课程《纳米材料》。主持《材料力学性能》省级精品课程、省级专业综合改革项目。
研究领域
低维纳米材料
光催化
电化学
表面处理液
涂料
保温材料
学术成果
主持企业产学研重大课题1项、安徽省自然科学基金1项、安徽省教育厅自然科学研究重点项目2项、企业横向开发项目等10余项,近年来在Journal of Materials Chemistry A, CrystEngComm,Journal of The Electrochemical Society, RSC Advances, Electrochimica Acta,Journal of Alloys and Compounds, Physical Review Letters及Journal of Applied Physics等国际专业学术期刊上发表论文60余篇,关于钒酸钙纳米棒的形成机制及酒石酸生物电化学传感性能的研究论文被Journal of Materials Research (27, 2391-2400 (2012))选作了封面论文出版。获得国家发明专利10余项。作为主编编写了高等学校材料科学与工程类专业“十二五”规划教材、安徽省“十二五”省级规划教材《高技术陶瓷材料》及“十一五”国家规划教材《纳米材料导论》,主编了冶金工业出版社出版的《一维无机纳米材料》。
邮箱:lzpei@ahut.edu.cn;lzpei1977@163.com
专利:
[1]裴立宅, 蔡征宇. 一种铝酸锶纳米片复合涂料[P]. 国家发明专利号: ZL201510056635.8, 授权日期: 2016. 08. 24.
[2]裴立宅, 蔡征宇, 王帅, 杨硕. 一种中空球状锗酸镧及其制备方法 [P]. 国家发明专利号: ZL201410662850.8, 授权日期: 2016. 05. 11.
[3]裴立宅. 一种硫化钕纳米针的合成方法 [P]. 国家发明专利号: ZL201410662884.7, 授权日期: 2016. 03. 02.
[4]裴立宅, 刘汉鼎, 蔡征宇. 一种用于镀锌板、铝及铜合金表面处理的无铬钝化液[P]. 国家发明专利号: ZL201410008509.0, 授权日期: 2016. 2. 10.
[5]裴立宅, 蔡征宇. 一种氧化锌/氧化钛复合纳米棒的制备方法 [P]. 国家发明专利号: ZL201410009087.9, 授权日期: 2015. 8. 26.
[6]裴立宅. 一种钒酸锰纳米针状结构及其合成方法[P]. 国家发明专利号: ZL201310074998.5, 授权日期: 2015. 5. 13.
[7]裴立宅, 俞海云. 一种钒酸锌纳米棒复合涂料[P]. 国家发明专利号: ZL201310074971.6, 授权日期: 2015. 4. 1.
[8]裴立宅. 钛酸铜纳米针及其制备方法[P]. 国家发明专利号: ZL201310453564.6, 授权日期: 2014. 9. 3.
[9]裴立宅. 一种制备钒酸锌纳米棒的方法[P]. 国家发明专利号: ZL201310074973.5, 授权日期: 2014. 8. 13.
[10]裴立宅, 胡锦莲, 樊传刚, 杨永. 一种锗酸钙纳米线及其制备方法[P]. 国家发明专利授权号: ZL201010502467.8, 授权日期: 2013. 1. 9.
[11]裴立宅, 赵海生. 锗酸铜纳米线及其制备方法 [P]. 中国, 国家发明专利号: ZL200810235763.9, 授权日期: 2011. 11. 9.
[12]裴立宅. 一种低温制备无金属催化剂的纳米硅线的方法 [P]. 中国, 国家发明专利, 专利号: ZL200710021448.1, 授权日期: 2010. 5. 19.
著作及教材:
[1] 裴立宅. 高技术陶瓷材料 [M]. 安徽合肥: 合肥工业大学出版社, 2015, 6. 高等学校材料科学与工程类专业“十二五”规划教材, 普通高等教育安徽省省级规划教材
[2] 唐元洪, 裴立宅, 赵新奇. 纳米材料导论 [M]. 湖南长沙: 湖南大学出版社, 2011, 6. 普通高等教育“十一五”国家规划教材
[3] 晋传贵, 裴立宅, 俞海云. 一维无机纳米材料 [M]. 北京: 冶金工业出版社, 2007, 6.
获奖:
[1]张千峰, 裴立宅, 段泰轲, 董永平. 从分子簇合物到纳米尺度组分的设计思路及结构复合材料的制备与应用. 安徽省科学技术奖三等奖, 证书编号: 2012-3-R2, 2012.
[2] 裴立宅. 安徽省第三届优秀硕士论文指导教师, 证书编号: 2011175, 2011.
[3] 裴立宅. 安徽工业大学2009届优秀硕士论文指导教师, 2010.
[4] 裴立宅. 安徽工业大学2012届、2013届优秀硕士论文指导教师, 2014.
论文:
[1] L. Z. Pei*, T. Wei, N. Lin, C. G. Fan, Z. Yang. Aluminium bismuthate nanorods and electrochemical performance forthe detection of tartaric acid [J]. J Alloy Compd, 2016, 679(9): 39-46.
[2] L. Z. Pei*, T. Wei, N. Lin, H. Zhang. Synthesis of bismuth nickelate nanorods and electrochemicaldetection of tartaric acid using nanorods modified electrode [J]. J Alloy Compd, 2016, 663(4): 677-685.
[3] L. Z. Pei*, N. Lin, T. Wei, H. Y. Yu. Synthesis of manganese vanadate nanobelts and their visible lightphotocatalytic activity for methylene blue [J]. Journal of ExperimentalNanoscience, 2016, 11(3): 197-214.
[4] L. Z. Pei*, T. Wei, N. Lin, Z. Y. Cai, C. G. Fan, Z.Yang*. Synthesis of zinc bismuthate nanorods andelectrochemical performance for sensitive determination of L-cysteine [J]. JElectrochem Soc, 2016, 163(2): H1-H8.
[5] L. Z. Pei*, S. Wang, N. Lin, H. D. Liu, H. Y. Yu. Calcium germanate nanowires by vanadium doping with improvedphotocatalytic activities [J]. Journal of Experimental Nanoscience, 2015,10(16): 1223-1231.
[6] L. Z. Pei*, N. Lin, T. Wei, H. D. Liu, H. Y. Yu. Zinc vanadate nanorods and their visible light photocatalyticactivity [J]. J Alloy Compd, 2015, 631(5): 90-98.
[7] N. Lin, L. Z. Pei*, T. Wei, H. Y. Yu. Synthesis of Cu vanadate nanorods forvisible light photocatalytic degradation of gentian violet. Cryst Res Technol, 2015, 50(3): 255-262.
[8] L. Z. Pei*, N. Lin, T. Wei, H. D. Liu, H. Y. Yu. Formation of copper vanadate nanobelts and the electrochemicalbehaviors for the determination of ascorbic acid [J]. J Mater Chem A, 2015,3(6): 2690-2700.
[9] L. Z. Pei*, S. Wang, H. D. Liu, N. Lin, H. Y. Yu*. Vanadium doped barium germanate microrods and photocatalyticproperties under solar light [J]. Solid State Commun, 2015, 202(1): 35-38.
[10] L. Z. Pei*, H. D. Liu, N. Lin, H. Y. Yu. Bismuthtitanate nanorods and their visible light photocatalytic properties [J]. JAlloy Compd, 2015, 622(1): 254-261.
[11] L. Z. Pei*, H. D. Liu, N. Lin, H. Y. Yu*. Hydrothermal synthesisof cerium titanate nanorods and its application in visible light photocatalysis[J]. Mater Res Bull, 2015, 62(1): 40-46.
[12] L. Z. Pei*, S. Wang, N. Lin, H. D. Liu, Y. H. Guo. Vanadium doping of stronium germanate and their visiblephotocatalytic properties [J]. RSC Adv, 2014, 4(89): 48144-48149.
[13] L. Z. Pei*, S. Wang, H. D. Liu, Y. Q. Pei. A review on ternary vanadate one-dimensional nanomaterials [J].Recent Pat Nanotechnol, 2014, 8(2): 142-155.
[15] L. Z. Pei*, S. Wang, Y. K. Xie, Y. H. Yu, Y. H. Guo. Hydrothermal synthesis of barium germanate microrods andphotocatalytic degradation performance for methyl blue [J]. J Alloy Compd,2014, 587(2): 625-631.
[16] Y. K. Xie, L. Z. Pei*, Y. Q. Pei, Z. Y. Cai*. Determination of phenyl acetic acid by cyclic voltammetrywith electrochemical detection [J]. Measurement, 2014, 47(1): 341-344.
[17] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. G. Fan, Q. F. Zhang. Formation mechanism of manganese vanadate microtubes and theirelectrochemical sensing properties[J]. Int J Mater Res, 2013, 104(12): 1267-1273.
[18] L. Z. Pei*, S. Wang, Y. X. Jiang, Y. Li, Y. K. Xie, Y. H.Guo. Single crystalline Sr germanatenanowires and their photocatalytic performance for thedegradation of methyl blue [J]. CrystEngComm, 2013,15(38): 7815-7823.
[19] Z. Y. Cai, L. Z. Pei*, Y. K. Xie, C. G. Fan, D. G. Fu. Electrochemical determination of benzoic acid using CuGeO3nanowire modified glassy carbon electrode. Meas Sci Technol, 2013, 24(9): 095701.
[20] L. Z. Pei*, Y. K. Xie, Y. Q. Pei, Y. X. Jiang, H. Y. Yu,Z. Y. Cai. Hydrothermal synthesis of Mn vanadatenanosheets and visible-light photocatalytic performance for the degradation ofmethyl blue [J]. Mater Res Bull, 2013, 48(3): 2557-2565.
[21] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. G. Fan, H. Y. Yu. Synthesis and characterizations of manganese vanadate nanorods asglassy carbon electrode modified materials for the determination of L-cysteine[J]. CrystEngComm, 2013, 15 (9):1729-1738.
[22] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. Z. Yuan, D. K. Li,Q. F. Zhang. Polyvinyl pyrrolidone-assisted synthesis of crystalline Mnvanadate microtubes[J]. MaterRes, 2013, 16(1): 173-180.
[23] L. Z. Pei*, Y. Yang, Y. Q. Pei, Y. K. Xie. A review onone-dimensionalternary germanate nanomaterials [J]. Recent PatNanotechnol, 2013, 7(2): 93-107.
[24] Y. P. Dong*, L. Z. Pei,X. F. Chu, W. B. Zhang, Q. F. Zhang. Electrogenerated chemiluminescence of bismuthsulfide nanorods modified electrode in alkaline aqueous solution [J]. Analyst, 2013, 138(8): 2386-2391.
[25] Z. Y. Cai, L. Z. Pei*, Y. Yang, Y. Q. Pei, Y. K. Xie, C. G.Fan, D. G. Fu. CuGeO3/polyaniline nanowiresand their electrochemical responses for tartaric acid [J]. Meas Sci Technol, 2012, 13(11): 115701.
[26] L. Z. Pei*, Z. Y. Cai, Y. Q. Pei, Y. K. Xie, C. G. Fan, D.G. Fu. Electrochemical behaviors of ascorbic acid atCuGeO3/polyaniline nanowire modified glassy carbon electrode [J]. JElectrochem Soc, 2012, 159(10): G107-G111.
[27] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. G. Fan, D. K. Li, Q.F. Zhang. Formation process of calcium vanadatenanorods and their electrochemical sensing properties[J]. J Mater Res, 2012, 27(18): 2391-2400. Published as a coverpaper
[28] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. Z. Yuan, D. K. Li,Q. F. Zhang. Growth of calcium vanadate nanorods [J]. CrystEngComm, 2012,14(13): 4262-4265.
[29] L. Z. Pei*, Y. K. Xie, Z. Y. Cai, Y. Yang, Y. Q. Pei, C. G.Fan, D. G. Fu. Electrochemical behaviors of ascorbicacid at copper germanate nanowire modified electrode[J]. J Electrochem Soc, 2012, 159(3): K55-K60.
[30] Z. Y. Cai, L. Z. Pei*, Y. Yang, Y. Q. Pei, C. G. Fan, D. G.Fu. Electrochemical behavior of tartaric acid at CuGeO3nanowire modified glassy carbon electrode[J]. J Solid State Electrochem, 2012, 16(6): 2243-2249.
[31] L. Z. Pei*, Z. Y. Cai. A review ongermanium nanowires[J]. Recent Patent on Nanotechnology, 2012, 6(1): 44-59.
[32] L. Z. Pei*, Y. Yang, Y. Q. Pei, S. L. Ran. Synthesis and microstructural control of flower-like cadmiumgermanate [J]. Mater Charact, 2011, 62(11): 1029-1035.
[33] L. Z. Pei*, Y. Yang, C. G. Fan, C. Z. Yuan, T. K. Duan,Q. F. Zhang. Synthesis and characterizations of calcium germanate nanowires[J]. CrystEngComm, 2011, 13(14): 4658-4665.
[34] L. Z. Pei*, Y. Yang, L. J. Yang, C. G. Fan, C. Z. Yuan,Q. F. Zhang. Large-scale synthesis and roles of growth conditions on theformation of Zn2GeO4 nanorods [J]. Solid State Commun, 2011, 151(14-15): 1036-1041.
[35] L. Z. Pei*, J. F. Wang, Y. P. Dong, X. X. Tao, S. B. Wang,C. G. Fan, J. L. Hu, Q. F. Zhang. Single-source routeto Bi2S3 nanorods and their electrochemical sensingproperties [J]. Curr Nanosci, 2011, 7(3): 402-406.
[36] L. Z. Pei*, Y. Yang, C. Z. Yuan, T. K. Duan, Q. F.Zhang. A simple route to synthesize manganese germanate nanorods [J]. MaterCharact, 2011, 62(6): 555-562.
[37] L. Z. Pei*, Y. Yang, Y. Q. Pei, C. Z. Yuan, T. K. Duan,Q. F. Zhang. Cd2Ge2O6 nanowires grown by asimple hydrothermal route [J]. Cryst Res Technol, 2011, 46(5): 480-484.
[38] L. Z. Pei*, J. F. Wang, L. J. Yang, S. B. Wang, Y. P. Dong,C. G. Fan, Q. F. Zhang. Synthesis of CuS and Cu1.1Fe1.1S2crystals and their electrochemical properties [J]. Mater Charact, 2011, 62(3):354-359.
[39] L. Z. Pei*, Y. Yang, L. J. Yang, C. Z. Yuan, C. G. Fan,Q. F. Zhang. Low temperature synthesis of CuGeO3 nanoflowers fromn-hepane solution. Int J Mater Res, 2011, 102(11):1391-1396.
[40] L. Z. Pei*, L. J. Yang, Y. Yang, C. Z. Yuan, C. G. Fan, Q.F. Zhang. Large-scale synthesis and growth conditionsdependence on the formation of CuGeO3 nanowires. Mater Chem Phys,2011, 130(1-2): 104-112.
[41] L. Z. Pei*, L. J. Yang, Y. P. Dong, J. F. Wang, C. G.Fan, J. Chen, W. Y. Yin, Q. F. Zhang Large-scale synthesis of submicron galliumoxide hydrate rods and their optical and electrochemical properties [J]. Cryst Res Technol, 2010, 45(10): 1087-1093.
[42] L. Z. Pei*, W. Y. Yin, J. F. Wang, J. Chen, C. G. Fan, Q.F. Zhang. Low temperature synthesis of magnesium oxideand spinel powders by a sol-gel process [J]. Mat Res,2010, 13(3): 339-343.
[43] Y. P. Dong*, L. Z. Pei*, X. F. Chu, W. B. Zhang, Q. F.Zhang. Electrochemical behavior of cysteine at a CuGeO3nanowires modified glassy carbon electrode [J]. Electrochim Acta, 2010, 55(18):5135-5141.
[44] L. Z. Pei*, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, J. F.Wang, C. G. Fan, J. Chen, Q. F. Zhang. Low temperaturegrowth of single crystalline germanium nanowires [J]. Mater Res Bull, 2010,45(2): 153-158.
[45] L. Z. Pei*, L. J. Yang, Y. Yang, C. G. Fan, W. Y. Yin, J.Chen, Q. F. Zhang. A green and facile route to calciumsilicate nanowires [J]. Mater Charact, 2010, 61(11): 1281-1285.
[46] L. Z. Pei*, J. F. Wang, W. Tan, H. Y. Yu, C. G. Fan, J.Chen, Q. F. Zhang. A convenient synthesis route to thezinc metagermanate nanorods [J]. Curr Nanosci, 2009, 5(4): 470-473.
[47] L. Z. Pei*, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, Q.F. Zhang. Single crystalline ZnO nanorods grown by a simple hydrothermalprocess [J]. Mater Charact, 2009, 60(9): 1063-1067.
[48] L. Z. Pei*, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, Q.F. Zhang, C. G. Fan. Low temperature growth and characterizations of singlecrystalline CuGeO3 nanowires [J]. CrystEngComm, 2009, 11(8):1696-1701.
[49] L. Z. Pei*, H. S. Zhao, W. Tan, Q. F. Zhang. Facile hydrothermal preparation and characterizations of singlecrystalline Ge dioxide nanowires [J]. J Appl Phys, 2009, 105(5): 054313.
[50] L. Z. Pei*. Hydrothermal deposition and characterization of silicon oxidenanospheres [J]. Mater Charact, 2008, 59(5): 656-659.
[51] L. Z. Pei. Y. H. Tang*, X. Q. Zhao, Y. W. Chen, C. Guo. Formation mechanism of silicon carbide nanotubes with specialmorphology [J]. J Appl Phys, 2006, 100(4): 046105.
[52] L. Z. Pei, Y. H. Tang*, Y. W. Chen, C. Guo, X. X. Li, Y.Yuan, Y. Zhang. Preparation of silicon carbide nanotubes by hydrothermal method[J]. J Appl Phys, 2006, 99(11): 114306.
[53] L. Z. Pei, Y. H. Tang*, Y. W. Chen, C. Guo, W. Zhang, Y.Zhang. Silicon nanowires grown from silicon monoxideunder hydrothermal conditions [J]. J Cryst Growth, 2006, 289(2): 423-427.
[54] Y. H. Tang*, L. Z. Pei, Y. W. Chen, C. Guo. Self-assembled silicon nanotubes under supercritically hydrothermalconditions [J]. Phys Rev Lett, 2005, 95: 116102.